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ON THE GENERALIZATION OF PRANDTL'S SOLUTION IN SPHERICAL COORDINATES

D.D. IVLEV and A.V. ROMANOV

The generalization of Prandtl's solution /1/ on compression of an ideal rigid-
plastic layer by rough parallel plates is considered in a spherical coordinate
system.

Extension of Prandtl's solution to the case of plane deformation appeared in /2,3/, and
in /4/ a generalization of that solution was presented in cylindrical coordinates.
Consider the axisymmetric equilibrium state in a spherical coordinate system, assuming

that
8;5=10y; (P, 8), w=0, Too = Tag = Eog = ge‘p—_:()

where » is the component of displacement rate along the ¢ axis.
The equations of equilibrium assume the form

a3 1 9ty 1 .

0_;4-_‘)_ 08 +F[250—49—c®+rpactg6]=0 (1)
97,9 1 054 1

“%+EW+F[(3O~5¢)Ctge+3toe] =0

In the case of axisymmetric state we use the plasticity condition that corresponds to
the Tresca prism edge

(3o — Gl +4i2g =4k, 0o =1y (3, +Og) + k (2)

All stress components are subsequently normalized with respect to double the yield stress

2k,
Assuming that
Too = Tpg (8) (3)
from (2) and (3) we obtain
3, — %= V1—1, (8 (4)
Using (2) — (4) we rewrite the equilibrium equations in the form
a3 N (0) d6g
o0, 040 =
~ + - 0, ae+ ) =0 (S)

N (8) = d;;ée +3m+tpectgﬁv 1
M©) =3t — (V112 0) +1) ctg
Integration of Egs. (5) yields
G =N@Inp+x0®),09=PO+ x@), PO =IM®)ad0 (6)

where (x(8),%(p) are arbitrary functions.
From (6) and (4) we have

O —og=N{®) Inp+yx (@) — PO —nip)=V1I—1,4 () (7)
It is necessary to set
N@®) =C, x{p)=Clnp, C= const (8)

In conformity with (5) and (8) we obtain for the determination of T9 (B) the equation

dt,g m
dg +3IV 11—t ractg®=C 41 =4, (9)
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Suppose that the solution of Eq.(9) has been determined. Then in conformity with {Hj-
(7) functions M (®), P ®) and function

x(6)=V1~rge+P(6) (10

are also determined. Thus, the stress state has been completely determined.
For the determination of deformation kinematics we use the conditions of isotropy and
incompressibility

=09 gyt gg + £, = (11)
We seek the displacement components of the form

u=pp)+pv(®), v =py(H)
For components of the deformation rate we then obtain

d d
sp:%—{—v, 88:%+v+'d% (12)
. 1 dv
sw—F+v+yctge, ”09:?&‘9
From Egs. (11) and (12) we have the equalities
dp_p_dy_dv (%%
L3 3-6(—————2% ) (13)
O 2 3y Y o8 —0
dp P do
from which follows
B W W 0 €= const (14)
BT g T T e
From formulas (14) we obtain
u = Bp, B:.%.(C_,—Cl)_—_const (15}
Using (15) we rewrite equalities (13) in the form
dv 28 dy dy
—_ ———— =0, - ==
Bts e ® 3v+de+yctge+33 0 (16}

Differentiating the second of equalities (16) and eliminating dv/dd, for the determina-
tion of function y(8) we obtain the equation

d¥y , dy _6 Tpo Y
W—F‘—m[ctgﬁ .GD_:G_(;_} - (17)

It is characteristic that a second order equation determined y(®). As in the case of
solution in cylindrical coordinates /4/, there are two independent solutions for the compon-
ents of displacements and deformations. The solution of Eq.(17) enables us to determine com-
pletely the components of displacement and deformation.

The analytic solution of Eq. (9) presents definite difficulties. Let us consider the
method of approximate solution.

Let a layer of perfectly plastic material be compressed by two approaching tapered plat-
es symmetric relative to the plane 8 =m/2 (Fig.l). We set a=n/2 -8 and expand all com-
ponents in series in powers of @, retaining smalls of up to the third order. We have

Top = T8 + T2 4 Taed 4 vt + . (18)
d— -:pe’)"’ =1—Y 12 — et 4+ ..., Tptga=galt e+ ..,
From (18) and (9), equating terms at like powers, we obtain
W=38—A,=A4,1,=0, 1,= A3 —~4%2, 1,= 0 (19)
Thus the expression for 1+, is of the form

Ty = Aa -+ (4/3 — A%2) (20)
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The constant 4 is determined by conditions at the boundary o= a*

a,g,,=<,+g;>¢[(i+z;>'_ w]"' (21)

Then, using formulas (20) and (6), we can obtain the solution in terms of stresses.
We solve Egq.(17) using the approximate methods. We pass to the small angle a= /2 -0
and seek the solution in terms of expansion in powers of «

7= @ b Rt ¥se® b V= Ve + Vi@ vat b vt 4 (22)

We substitute (22) into (15), equate coefficients at like powers of a, and express all
unknowns in terms of v,. We obtain

vi=0, y,=—3B+v), vi=—3uB+v), 7=0 (23)
v=0, y3=(B+ve)(m+1), v.=@[6n(n+1)—n’+%’]. Y=0

This solution corresponds to compression of a
perfectly plastic material by rough bevelled plates
with 0 = const.

Let us consider a particular case of the
derived solution. We introduce new variables (so
that Ra* = h)

z=p—R, y==Ra, s =3 S, =0 T,=T

o Ty wy -~ PO

When passing to limit, as 6 - n/2 or a—0,R —

o, relations of the spherical deformation
state obviously become relations of the plane de-
formation state in which the bevelled plate surfaces are parallel. In the first approxima-
tion the obtained solution becomes the linearized Prandtl solution.

Fig.1l
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