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UDC 539.21 

ON THE GENERALIZATION OF PRANDTL'S SOLUTION IN SPHERICAL COORDINATES* 

D.D. IVLEV and A.V. ROMANOV 

The generalization of Prandtl's solution /l/ on compression of an ideal rigid- 

plastic layer by rough parallel plates is considered in a spherical coordinate 

system. 

Extension of Prandtl's solution to the case of plane deformation appeared in /2,3/, and 

in /4/ a generalization of that solution was presented in cylindrical coordinates. 
Consider the axisymmetric equilibrium state in a spherical coordinate system, assuming 

that 

where w is the component of displacement rate along the q~ axis. 
The equations of equilibrium assume the form 

a'p+ Pa 1 ar 

a 
p aB + +[2a, -ze -as+tTpe ctg e]=o 

1 as0 
5L+__+f,(:e- o 

dp P ae 
5 ) ctge f3r,J = 0 

(1) 

In the case of axisymmetric state we use the plasticity condition that corresponds to 

the Tresca prism edge 

(jp-aa)~+4$a =4!+, Oq='/a (ap+o,)+ k (2) 

All stress components are subsequently normalized with respect to double theyieldstress 
2k. 

Assuming that 

Tptl = Tpa (0) 

from (2) and (3) we obtain 

Tp - 0, = Y 1 - $0 (e) 

Using (2) - (4) we rewrite the equilibrium equations in the form 

a3 
$‘“‘“’ 

P 
=o, d$+.v(ej=o 

rv (8) = *+3V_CTjI$+r,,ctge- 1 

u(e) = 3?,e - cm+ 1) ctge 

Integration of Eqs.(S) yields 

u,, = N (B) Is P + x 0% 'me = P (8) + x(P), P (B) = \ M (B) de 

where (x(B),%(p) are arbitrary functions. 
From (6) and (4) we have 

(3) 

(4) 

(5) 

(6) 

ep - 0, = N (8) In p + x (0) - P (I3) - % (p) = v I - rp$ (f3) (7) 

It is necessary to set 

N (0) = C, X(P) = C In p, C = COnst (8) 

In conformity with (5) and (8) we obtain for the determination of Q~(B) the equation 

?$.+3- 
Pa fTpectg13=C+l=Al (9) 
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Suppose that the solution of Eq.(9) has been determined. 

(7) functions M(8), P (8) and function 
'Then in conformrty witi: ,‘%I 

x (0) = v-- + P (8) I iu; 

are also determined. Thus, the stress state has been completely determined. 
For the determination of deformation kinematics we use the conditions of isotropy and 

incompressibility 

FP - % _ %3 ---, 
OP - %I % 

Ep+E@+F -0 o- 

We seek the displacement components of the form 

u = P (P) + PV (0). u = PY (3) 

For components of the deformation rate we then obtain 

(11) 

(12) 

From Eqs.(ll) 

(13) 

from which follows 

From formulas 

Using (15) we 

F =dl”+v 
p dp ’ 

F~=14+V+Yctge, I dv 

P $3 = 7 de 

and (12) we have the equalities 

!%_1L=c 
* P 

I, 

(14) we obtain 

p = Bp, B = $ (C, - C,) = const 

rewrite equalities (13) in the form 

(14) 

(15) 

dv 2Tpe 

a+--= 
dy 0, 

op --a0 de 
3v+dy+yetge+3B=O 

d9 
(16) 

Differentiating the second of equalities (16) and eliminating duld3, for the determina- 

tion of function ~(0) we obtain the equation 

~+C![~tge-e.-._3%-]-~ =0 

Gp - =e de (17) 

It is characteristic that a second order equation determined ~(3). As in the case of 

solution in cylindrical coordinates /4/, there are two independent solutions for the compon- 

ents of displacements and deformations. The solution of Eq.(17) enables us to determine com- 

pletely the components of displacement and deformation. 
The analytic solution of Eq.19) presents definite difficulties. Let us consider the 

method of approximate solution. 
Let a layer of perfectly plastic material be compressed by two approaching tapered plat- 

es symmetric relative to the plane 8=x/2 (Fig.1). We set cz=n/2-I3 and expand all com- 

ponents in series in powers of a, retaining smalls of up to the third order. We have 

be = 7,a + 7,a" + Gas + ?,a‘+ (18) 

(i - Q”* = i - ‘/* ?,‘a* - z,r*aJ + . , $0 tg a = T@ + 7*aa + . . . 

From (18) and (9), equating terms at like powers, we obtain 

r,=3- A,=A, '$ -0, TV = A/3 -AAZ12, 7, = 0 

Thus the expression for ~~~ is of the form 

7 ,,e = Aa+ (A/3 -AZ/2) a' 

(19) 

(20) 
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The constant A is determined by conditions at the boundary a= a* 

(21) 

Then, using formulas (20) and (6), we can obtain the solution in terms of stresses. 

We solve Eq.(17) using the approximate methods. We pass to the small angle a = x12 -e 

and seek the solution in terms of expansion in powers Of a 

v = &a -t y*a2 + YsaJ + . . . . ~=vv,~v,a+vga2+vsa3+... (22) 

We substitute (22) into (15), equate coefficients at like powers of a, and express all 

unknowns in terms of vO. We obtain 

fl = 0, PI= -3(S+%), Y*= -33r,(iJ+v,), Yn = 0 (23) 

vs = 0, y3 = (R$-v,) (af 1). vI = u+v, 611(rl + ~)--T~J f? 
4 [ 1 , vi= 0 
This solution corresponds to compression of a 

perfectly plastic material by rough bevelledplates 

with 3 = const. 

Let us consider a particular case of the 
derived solution. We introduce new variables (so 

that Ra* = h) 

Z =p-R, y=Ra, s~=T~, sy=oo, T~=T~~ 

Fig.1 
When passing to limit, as 3-n/2 or a-.O,R- 

00, relations of the spherical deformation 

state obviously become relations of the plane de- 
formation state in which the bevelled plate surfaces are parallel. In the first approxima- 
tion the obtained solution becomes the linearized Prandtl solution. 
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